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Traditional Analog Sizing Method
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Disadvantage e Labor-intensive

e Poor accuracy

e Time-intensive
e Depend on expert experience

Netlist with sizing
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e Strategy reuse Adva ntage
Independent of expert expertise

Challenges in Analog Circuit Sizing:

Simulator

e Labor-free
e High accuracy

Optimal Two-Stage Op-Amp
with MARL Grouping

Sparse Design Space (e.g., 10°° points)

High-Value

Experimental Results & Validation
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Mean Reward Comparison for LDO Design #1
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MA-PPO, Group by Circuit Block(Previous work)
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Note: GSNR}; denotes harmonic mean GSNR. Functionality-based grouping achieves consistently higher GSNR =-
clearer credit assignment =~ faster convergence.

Key Achievements:
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\/ Scalability: Optimizes circuits with up to 179 parameters in 102°* design space




